Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Disabil Rehabil ; 45(14): 2374-2381, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797711

RESUMO

PURPOSE: Poorly fitting prosthetic sockets contribute to decreased quality of life, health, and well-being for persons with amputations. Therefore, improved socket fit is a high clinical priority. METHODS: In this study, we describe the design and testing of a novel sensor system that can be incorporated into a prosthetic socket to measure distal end weight bearing in the socket and can alert a prosthesis user if poor socket fit is suspected. We present the results of testing this device with three Veterans who were new prosthesis users and three Veterans who were experienced prosthesis users. RESULTS AND CONCLUSIONS: We collected sensor data during walking trials while participants wore varying numbers of sock plies and qualitative feedback on the design of the socket fit sensor system. For analysis, peak sensor measurements during walking cycles were identified and combined with socket fit data (i.e., a clinician-determined level of "good," "too tight," or "too loose" and the number of sock ply worn each trial). We found consistent relationships between peak sensor measurements and socket fit in our sample. Also, all users expressed an interest in the device, highlighting its potential benefits during early prosthesis training.Implications for RehabilitationEnsuring socket fit is challenging for many prosthesis users.A novel wearable sensor system can be used to identify socket fit issues for some prosthesis users.This type of system could be most helpful for new prosthesis users and those with sensory and cognitive challenges.


Assuntos
Membros Artificiais , Qualidade de Vida , Humanos , Desenho de Prótese , Estudos de Viabilidade , Amputação Cirúrgica , Implantação de Prótese , Cotos de Amputação , Ajuste de Prótese/métodos
2.
Prosthet Orthot Int ; 46(2): 202-205, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932513

RESUMO

BACKGROUND: Individuals with lower limb loss often wear a gel liner and enclosed socket for connecting to a terminal prosthetic device. Historically, a significant limitation to traditional liners and sockets is that they are thermal insulators, thereby trapping heat and moisture within, which can lead to numerous deleterious issues, including loss of suspension and residual limb skin problems, and, in turn, reductions in mobility, function, and overall quality of life. To mitigate these issues, new approaches are therefore needed to enhance the residual limb climate (e.g. breathability and air permeability), allowing the dispersal of heat and moisture from within the liner and socket. METHODS: In this study, a multidisciplinary team sought to establish the feasibility of an innovative prosthetic liner-socket system, designed to improve residual limb climate by capitalizing on passive (i.e. nonpowered) ventilation to reduce temperature/moisture and improve socket comfort for persons with transtibial amputations. Focus group meetings, along with an iterative design approach, were implemented to establish innovative design and development concepts that led to a passively ventilated liner-socket system. CONCLUSIONS: Ex vivo design has supported the feasibility of developing a passively ventilated liner-socket. To build on these successes, future development and human subjects testing are needed to finalize a commercially viable system. Implementing a passively ventilated liner-socket system that improves residual limb health and comfort, without compromising function or mobility of the user, into standard clinical care may encourage a more active lifestyle and enhance the quality of life for individuals after lower limb loss.


Assuntos
Membros Artificiais , Qualidade de Vida , Cotos de Amputação , Humanos , Extremidade Inferior , Desenho de Prótese
3.
PLoS One ; 13(9): e0204512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256851

RESUMO

Previous work suggests that to restore postural stability for individuals with lower-limb amputation, ankle-foot prostheses should be designed with a flat effective rocker shape for standing. However, most commercially available ankle-foot prostheses are designed with a curved effective rocker shape for walking. To address the demands of both standing and walking, we designed a novel bimodal ankle-foot prosthesis that can accommodate both functional modes using a rigid foot plate and an ankle that can lock and unlock. The primary objective of this study was to determine if the bimodal ankle-foot system could improve various aspects of standing balance (static, dynamic, and functional) and mobility in a group of Veterans with lower-limb amputation (n = 18). Standing balance was assessed while subjects completed a series of tests on a NeuroCom Clinical Research System (NeuroCom, a Division of Natus, Clackamas, OR), including a Sensory Organization Test, a Limits of Stability Test, and a modified Motor Control Test. Few statistically significant differences were observed between the locked and unlocked ankle conditions while subjects completed these tests. However, in the absence of visual feedback, the locked bimodal ankle appeared to improve static balance in a group of experienced lower-limb prosthesis users whose PLUS-M mobility rating was higher than approximately 73% of the sample population used to develop the PLUS-M survey. Given the statistically significant increase in mean equilibrium scores between the unlocked and locked conditions (p = 0.004), future testing of this system should focus on new amputees and lower mobility users (e.g., Medicare Functional Classification Level K1 and K2 prosthesis users). Furthermore, commercial implementation of the bimodal ankle-foot system should include a robust control system that can automatically switch between modes based on the user's activity.


Assuntos
Tornozelo , Membros Artificiais , , Equilíbrio Postural , Adulto , Idoso , Amputados , Fenômenos Biomecânicos , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Equilíbrio Postural/fisiologia , Desenho de Prótese , Sensação/fisiologia , Posição Ortostática , Veteranos , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...